23 research outputs found

    Multiparty Sessions based on Proof Nets

    Full text link
    We interpret Linear Logic Proof Nets in a term language based on Solos calculus. The system includes a synchronisation mechanism, obtained by a conservative extension of the logic, that enables to define non-deterministic behaviours and multiparty sessions.Comment: In Proceedings PLACES 2014, arXiv:1406.331

    Session Types in Concurrent Calculi: Higher-Order Processes and Objects

    No full text
    This dissertation investigates different formalisms, in the form of programming language calculi, that are aimed at providing a theoretical foundation for structured concurrent programming based on session types. The structure of a session type is essentially a process-algebraic style description of the behaviour of a single program identifier serving as a communication medium (and usually referred to as a channel): the types incorporate typed inputs, outputs, and choices which can be composed to form larger protocol descriptions. The effectiveness of session typing can be attributed to the linear treatment of channels and session types, and to the use of tractable methods such as syntactic duality to decide if the types of two connected channels are compatible. Linearity is ensured when accumulating the uses of a channel into a composite type that describes also the order of those actions. Duality provides a tractable and intuitive method for deciding when two connected channels can interact and exchange values in a statically determined type-safe way. We present our contributions to the theory of sessions, distilled into two families of programming calculi, the first based on higher-order processes and the second based on objects. Our work unifies, improves and extends, in manifold ways, the session primitives and typing systems for the Lambda-calculus, the Pi-calculus, the Object-calculus, and their combinations in multi-paradigm languages. Of particular interest are: the treatment of infinite interactions expressed with recursive sessions; the capacity to encapsulate channels in higher-order structures which can be exchanged and kept suspended, i.e., the use of code as data; the integration of protocol structure directly into the description of objects, providing a powerful and uniformly extensible set of implementation abstractions; finally, the introduction of asynchronous subtyping, which enables controlled reordering of actions on either side of a session. Our work on higher-order processes and on object calculi for session-based concurrent programming provides a theoretical foundation for programming language design integrating functional, process, and object-oriented features

    Affine Sessions

    Full text link
    Session types describe the structure of communications implemented by channels. In particular, they prescribe the sequence of communications, whether they are input or output actions, and the type of value exchanged. Crucial to any language with session types is the notion of linearity, which is essential to ensure that channels exhibit the behaviour prescribed by their type without interference in the presence of concurrency. In this work we relax the condition of linearity to that of affinity, by which channels exhibit at most the behaviour prescribed by their types. This more liberal setting allows us to incorporate an elegant error handling mechanism which simplifies and improves related works on exceptions. Moreover, our treatment does not affect the progress properties of the language: sessions never get stuck

    Proof Nets as Processes

    Get PDF
    This work describes a process algebraic interpretation of Proof-nets, which are the canonical objects of Linear Logic proofs. It therefore offers a logically founded basis for deterministic, implicit parallelism.We present delta-calculus, a novel interpretation of Linear Logic, in the form of a typed process algebra that enjoys a Curry-Howard correspondence with Proof Nets. Reduction inherits the qualities of the logical objects: termination, deadlock-freedom, determinism, and very importantly, a high degree of parallelism. We obtain the necessary soundness results and provide a propositions-as-types theorem. The basic system is extended in two directions. First, we adapt it to interpret Affine Logic. Second, we propose extensions for general recursion, and introduce a novel form of recursive linear types. As an application we show a highly parallel type-preserving translation from a linear System F and extend it to the recursive variation. Our interpretation can be seen as a more canonical proof-theoretic alternative to several recent works on pi-calculus interpretations of linear sequent proofs (propositions-as-sessions) which exhibit reduced parallelism

    Soft Session Types

    Get PDF
    We show how systems of session types can enforce interactions to be bounded for all typable processes. The type system we propose is based on Lafont's soft linear logic and is strongly inspired by recent works about session types as intuitionistic linear logic formulas. Our main result is the existence, for every typable process, of a polynomial bound on the length of any reduction sequence starting from it and on the size of any of its reducts.Comment: In Proceedings EXPRESS 2011, arXiv:1108.407

    Foundations of Session Types and Behavioural Contracts

    Get PDF
    International audienceBehavioural type systems, usually associated to concurrent or distributed computations, encompass concepts such as interfaces, communication protocols, and contracts, in addition to the traditional input/output operations. The behavioural type of a software component specifies its expected patterns of interaction using expressive type languages, so that types can be used to determine automatically whether the component interacts correctly with other components. Two related important notions of behavioural types are those of session types and behavioural contracts. This paper surveys the main accomplishments of the last twenty years within these two approaches

    Choreographies with Secure Boxes and Compromised Principals

    Get PDF
    We equip choreography-level session descriptions with a simple abstraction of a security infrastructure. Message components may be enclosed within (possibly nested) "boxes" annotated with the intended source and destination of those components. The boxes are to be implemented with cryptography. Strand spaces provide a semantics for these choreographies, in which some roles may be played by compromised principals. A skeleton is a partially ordered structure containing local behaviors (strands) executed by regular (non-compromised) principals. A skeleton is realized if it contains enough regular strands so that it could actually occur, in combination with any possible activity of compromised principals. It is delivery guaranteed (DG) realized if, in addition, every message transmitted to a regular participant is also delivered. We define a novel transition system on skeletons, in which the steps add regular strands. These steps solve tests, i.e. parts of the skeleton that could not occur without additional regular behavior. We prove three main results about the transition system. First, each minimal DG realized skeleton is reachable, using the transition system, from any skeleton it embeds. Second, if no step is possible from a skeleton A, then A is DG realized. Finally, if a DG realized B is accessible from A, then B is minimal. Thus, the transition system provides a systematic way to construct the possible behaviors of the choreography, in the presence of compromised principals

    Machine-Checked Semantic Session Typing

    Get PDF
    Session types- A family of type systems for message-passing concurrency-have been subject to many extensions, where each extension comes with a separate proof of type safety. These extensions cannot be readily combined, and their proofs of type safety are generally not machine checked, making their correctness less trustworthy. We overcome these shortcomings with a semantic approach to binary asynchronous affine session types, by developing a logical relations model in Coq using the Iris program logic. We demonstrate the power of our approach by combining various forms of polymorphism and recursion, asynchronous subtyping, references, and locks/mutexes. As an additional benefit of the semantic approach, we demonstrate how to manually prove typing judgements of racy, but safe, programs that cannot be type checked using only the rules of the type system. Programming Language

    Channels as Objects in Concurrent Object-Oriented Programming

    Full text link
    There is often a sort of a protocol associated to each class, stating when and how certain methods should be called. Given that this protocol is, if at all, described in the documentation accompanying the class, current mainstream object-oriented languages cannot provide for the verification of client code adherence against the sought class behaviour. We have defined a class-based concurrent object-oriented language that formalises such protocols in the form of usage types. Usage types are attached to class definitions, allowing for the specification of (1) the available methods, (2) the tests clients must perform on the result of methods, and (3) the object status - linear or shared - all of which depend on the object's state. Our work extends the recent approach on modular session types by eliminating channel operations, and defining the method call as the single communication primitive in both sequential and concurrent settings. In contrast to previous works, we define a single category for objects, instead of distinct categories for linear and for shared objects, and let linear objects evolve into shared ones. We introduce a standard sync qualifier to prevent thread interference in certain operations on shared objects. We formalise the language syntax, the operational semantics, and a type system that enforces by static typing that methods are called only when available, and by a single client if so specified in the usage type. We illustrate the language via a complete example.Comment: In Proceedings PLACES 2010, arXiv:1110.385
    corecore